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Abstract

In a previous work, a method was presented to detect
sleep apnea using signals commonly found in wearable de-
vices: peripheral oxygen saturation (SpO2) and pulse pho-
toplethysmography (PPG). However, these signals were
obtained from a conventional fingertip pulse oximeter. This
paper describes a pilot study applying those methods with
signals acquired by a wrist-worn wearable device in a non-
supervised home environment (n = 12). A classifier was
applied to differentiate normal from abnormal breathing
segments. Later, the Cyclic Variation of Heart Rate Index
(CVHRI) was calculated within the abnormal breathing
segments. The classifier achieved an accuracy of 65.7%
on the wearable data and CVHRI maintained a strong cor-
relation with the AHI (r = 0.85, p < 0.001), suggesting
its potential for patient stratification remains viable.

1. Introduction

Sleep apnea-hypopnea syndrome (SAHS) is a sleep dis-
order characterized by recurrent episodes of either breath-
ing interruption or significant reduction in airflow, which
can lead to serious health outcomes. These effects have
considerable socioeconomic impacts, but they can be mit-
igated with appropriate treatment. However, SAHS is a
common but often underdiagnosed condition, partly due to
the limitations of the gold-standard polysomnography [1].
Failure to diagnose SAHS is associated with a higher risk
of hypertension, cardiovascular disease, stroke, daytime
sleepiness, motor vehicle accidents, and reduced quality
of life [2].

Wearable devices offer a promising avenue for accessi-
ble, in-home screening. Previous research demonstrated a
method using SpO2 and PPG-derived pulse-to-pulse inter-
vals (PPI) from non-wearable sensors to classify breathing
segments into normal and abnormal breathing segments

[3]. The classification achieved satisfactory accuracy, and
the PPI from abnormal breathing segments was utilized
to calculate the CVHRI, as introduced in the same study.
This index measures the frequency of the bradycardia-
tachycardia pattern that usually appears during repetitive
apnea events, demonstrating a strong correlation with the
Apnea-Hypopnea Index (AHI).

This work presents a pilot study evaluating the trans-
lation of that method to a real-world scenario using data
acquired from a wrist-worn wearable device operated by
patients and controls unsupervised at home. To maintain
the consistency of covariates, the original methodology has
been preserved, including methods for event labeling and
their conversion to segment labeling. A classifier utilizing
Hjorth parameters [4] of PPI and SpO2 as inputs yielded
the best results and is consequently tested here. Further-
more, the model has not been retrained with the new sig-
nals but used as it was originally trained on the previous
non-wearable database. In this case, the PPI and SpO2 sig-
nals are obtained from the wearable device. CVHRI is also
calculated in the same way, using the PPI of the wearable
device within abnormal breathing segments.

2. Methods

2.1. Experiment

A group of 12 participants (age 49±16 years, includ-
ing 7 males) from a larger ongoing study (approved by
Aragon’s ethics committee, CEICA, PI23/336) was ana-
lyzed. This subset includes 8 subjects suspected of having
SAHS and 4 control cases. Participants were instructed to
use the recording devices over one night in their homes,
activating them at bedtime and deactivating them upon
waking. The recordings were performed using a com-
mercially available polygraph: the ApneaLink Air device
(ResMed Inc., USA), which provided SpO2 (denoted as
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Figure 1. Upper (blue) and lower (green) envelopes of the
PPG (black). Blue triangles represent maximum pulse am-
plitudes, while green triangles represent pulse basal points.

xSpO2
[n] in this paper) with a sampling rate of 1 Hz and

nasal pressure at 100 Hz signals as a reference; and a
Maxim MAXREFDES103 device (Analog Devices Inc.,
USA) as a wrist-worn wearable, which captured PPG sig-
nals at 256 Hz with red, green, and infrared channels (de-
noted xr

PPG[n], x
g
PPG[n] and xir

PPG[n], respectively, in this
paper).

Reference signals from the Apnealink device were used
exclusively to label apneic and hypopneic events. These
events were annotated according to AASM scoring guide-
lines [5], implementing an automated algorithm detailed
in [3]. Subsequently, event-based annotations were ag-
gregated into segment-based annotations to act as classi-
fier labels [3]. These annotations were then compared to
the classifier output using the wearable’s signals as input.
In addition, the reference was used to calculate the AHI,
which was compared to the CVHRI.

2.2. SpO2 estimation

PPI and SpO2 were estimated from the wearable PPG
signal and denoted dPPI[n] and dSpO2

[n], respectively, in
this paper. dPPI[n] was computed from xg

PPG[n] by identify-
ing the maximum upslope keypoints, as outlined in [6]. To
calculate dSpO2

[n], the R ratio, dR[n], has been estimated.
This ratio is derived from the AC/DC ratios of xr

PPG[n] and
xir

PPG[n]:

dR[n] =

dr
AC[n]

dr
DC[n]

dir
AC[n]

dir
DC[n]

+ ϵ
, (1)

where a small value ϵ = 0.01 has been added to the de-
nominator. This is needed as the signal amplitude may
temporarily decrease to near-zero values due to move-
ments that lead to suboptimal placement of the sensor.

The AC component of each channel is calculated as
the difference between the upper and lower envelopes of
xr

PPG[n] and xir
PPG[n] (see Figure 1). These envelopes were

computed by interpolation of maximum pulse amplitudes
and pulse basal points defined as in [6], respectively, at 256
Hz. The DC component is the lower envelope.

The errors are then removed using a fixed threshold ap-
plied to the squared derivative of dR[n]. This threshold
is empirically set at 10−8, effectively eliminating outliers
caused primarily by envelope estimation errors. A second
threshold is applied to dR[n] to remove values that exceed
4. Subsequently, the signal is low-pass filtered at 0.1 Hz to
eliminate rapid variations caused by noise.

According to the wearable documentation, oxygen satu-
ration should be calculated using the formula:

dSpO2
[n] = −16.6(dR[n])

2 + 8.3(dR[n]) + 100. (2)

However, this formula did not yield satisfactory results
with our data. Alternatively, a subject-specific calibra-
tion was carried out by linearly transforming dR[n] to have
the same mean and standard deviation as the reference
xSpO2

[n]. Finally, the signal was resampled at 25 Hz to
comply with the recommendations of the AASM [5] and
rounded to the nearest integer (see Figure 2).

2.3. Segment classification and CVHRI

dPPI[n] and dSpO2
[n] derived from the wearable device

were utilized to identify segments corresponding to nor-
mal and abnormal breathing. First, the signals were di-
vided into 180-second segments with a 150-second over-
lap. From each segment, Hjorth parameters (Activity, Mo-
bility, and Complexity) were extracted from both dPPI[n]
and dSpO2

[n]. This process yields six parameters per seg-
ment, which serve as input features for a classifier. No-
tably, this classifier was previously trained using signals
originating from non-wearable devices, as detailed in [3].
Given that, in this instance, dSpO2

[n] was estimated from
the wearable PPG, the classifier was evaluated utilizing
both this estimation and, separately, xSpO2

[n] from the ref-
erence device. This comparative approach allows for the
measurement of how this particular estimation technique
affects the classifier’s performance.

Subsequently, the CVHRI is computed from dPPI[n]
within those segments classified as exhibiting abnormal
breathing. It is within these particular segments that the
characteristic tachycardia-bradycardia pattern is expected
to manifest. The CVHRI is defined as the sum of the fre-
quencies of the spectral peaks, divided by the total number
of segments analyzed. This methodology results in a sin-
gle, patient-specific parameter, analogous to the AHI.

3. Results

The annotation using reference signals resulted in a total
of 6,143 normal breathing segments and 1,109 abnormal
breathing segments. The mean AHI was 5.95, with a stan-
dard deviation of 6.67. 7 subjects had AHI < 5; 3 subjects
had 5 ≤ AHI < 15; and 2 subjects had AHI ≥ 15.
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Figure 2. SpO2 estimation from Maxim. SpO2 from reference in green, estimate from Maxim in black.

r=0.85 (p<0.001)

Figure 3. AHI vs CVHRI. dSpO2
[n] estimated from the

wearable. Vertical lines separate AHI < 5, 5≤AHI < 15
and AHI ≥ 15 groups.

Following random class balancing [3], the classifica-
tion results for the segments are consolidated in Table 1.
Columns Acc, Pn, Rn, Pab and Rab represent the classi-
fier accuracy, precision for the normal breathing class, re-
call for the normal breathing class, precision for the abnor-
mal breathing class, and recall for the abnormal breathing
class, respectively. CVHRI correlates with the reference
AHI, with a Pearson correlation coefficient of r = 0.85
(p < 0.001). Figure 3 presents a scatter plot of AHI vs
CVHRI.

To assess the impact of estimating dSpO2
[n], a new

CVHRI is calculated from the outcomes of the segment
classification utilizing both the wearable dPPI[n] and the
reference xSpO2

[n]. Obtained correlation with AHI was
r = 0.95, p < 0.001 (see Figure 4).

Table 1. Segment classification results (%).

SpO2 Acc Pn Rn Pab Rab

Wearable 65.7 87.8 60.9 43.6 78.2
Conventional 77.0 88.1 72.1 65.9 84.7

r=0.95 (p<0.001)

Figure 4. AHI vs CVHRI. xSpO2
[n] from the refer-

ence. Vertical lines separate AHI < 5, 5≤AHI < 15 and
AHI ≥ 15 groups.

4. Discussion

The results obtained using the wearable signals show
a degradation compared to those calculated with the
polysomnography system in [3]. This was expected for
several reasons: a noisier PPG signal prone to artifacts; a
dSpO2

[n] estimation derived from this signal; and the use
of a pre-trained model designed for other types of signals.
The lower robustness of the PPG signal is linked to the
in-home non-supervised approach. However, the model
could be retrained for this kind of signals when more data
is available, and this remains a room for improvement.

Estimation of dSpO2
[n] from the wearable was not per-

formed using the formula provided by the manufacturer.
Instead, a subject-specific calibration was used, which led
to good qualitative results. However, future work should
include a quantitative evaluation and optimization. The
need to calibrate a wearable device for each user is not
the optimal situation. However, it is common practice to
request prior calibration from users for other types of mea-
surement, such as blood pressure. Nevertheless, the ap-
proach taken in this experiment could be improved, poten-
tially enabling better classification results, as evidenced by
the results obtained using the reference signal xSpO2

[n]. An
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alternative to this approach would be to retrain the classifi-
cation model using the Hjorth parameters of dR[n] instead
of the estimated dSpO2

[n]. Since the parameters reflect the
variance, center frequency, and bandwidth of the signal,
the operations performed for estimation (i.e., normaliza-
tion, multiplication by a constant, and addition of a con-
stant) should lead to proportional values.

The classification model should be re-trained using the
new signals as input when more data is available. An im-
provement in results is expected, given the significant dif-
ferences between xSpO2

[n] and dSpO2
[n].

The number of subjects should also be increased, as the
current sample is limited, with only 2 subjects having an
AHI ≥ 15. This constrains the analysis that could be per-
formed, excluding the stratification applied in [3]. More-
over, the reduced number of abnormal breathing segments
means that the classifier’s statistics are calculated using
1,109 segments per class, since class balance ensures that
each class has the same number of samples as the minority
class, in this case, the abnormal breathing class. Conse-
quently, the majority of classified segments are excluded
from evaluating the classifier’s performance. Therefore,
more subjects should be recorded, with a particular focus
on expanding the subgroup with AHI ≥ 15.

Despite this degradation, the results remain promis-
ing. The correlation between CVHRI and AHI remains
high, decreasing only slightly from 0.94 with the non-
wearable signals [3] to 0.85 with those from the wearable.
This likely enables effective stratification for sleep apnea
screening. The drop in correlation is primarily attributed
to the decline in classifier accuracy, which decreased from
86.3% [3] to 65.7%. However, this pronounced degrada-
tion in accuracy does not correspond to an equivalent per-
centage drop in the AHI-CVHRI correlation, suggesting
that CVHRI may be a robust metric against classifier er-
rors.

Nonetheless, the potential for improving dSpO2
[n] esti-

mation is evident in the results. When xSpO2
[n] is used

instead of the wearable-derived dSpO2
[n], the correlation

returns to 0.95, equivalent to that of [3], and the classi-
fier accuracy improves to 77.0%. While this is not as high
as in [3], it surpasses the accuracy achieved when only
wearable-derived inputs are used. This outcome is con-
sistent with the findings of [3], where Hjorth parameters of
xSpO2

[n] were shown to be the main predictors.

5. Conclusions

The results suggest that the method studied in [3] can be
applied to wearable devices used at the patient’s home with
no supervision, delivering good performance. The classi-
fier achieved an accuracy of 65.7%, while the correlation
between CVHRI and AHI was r = 0.85 (p < 0.001). The
high correlation indicates that stratification remains feasi-

ble. However, the sample size should be increased, partic-
ularly for the group with AHI ≥ 15, to enable a more com-
prehensive study. Additionally, efforts should focus on im-
proving the estimation of dSpO2

[n] from dR[n] or directly
using the latter as an input. Combined with retraining the
model to account for the new characteristics of the signals,
these steps are expected to enhance the results further.
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